Week 12 - Wednesday

COMP 1800

= What did we talk about last time?
= Objects
= Classes

= Constructors
= Accessors
= Mutators

Questions?

Assignment 8

Class Examples

» Let's write a Student class
= |nstance variables:

= First Name

= Last Name

= GPA

= D
= We need accessors for all of the instance variables
= And mutators for GPA

= Python has other special methods
= Some are useful if your class is designed to hold a collection of

things
= The getitem method retrieves an item based on the index
specified

= The __len method returns the number of items in the collection

= The contains__ method says whether or not an elementisin

your collection

= Let's make a Sentence class
= |ts constructor

= Takes a string
= Splits that string on spaces to make a list of strings

= Stores that list as its instance variable

= The getitem methodshould returnthe specified wordsin
the list T

= The 1len method returnsthe number of wordsinthe
sentence

= The contains methodshouldsay whether the list
contains the string the user is looking for

Hiding Data

= In many programming languages, there's a way to keep

member varia

= Java, C++, anc
member varia
of the class

vles hidden from the outside world
C# use the private keyword to mark

vles (and methods) as inaccessible from outside

= Such variables can only be affected from the outside by

methods

Python doesn't have a private keyword

Instead, it uses a naming convention to hide variables

All member variables that you want to be hidden should have
names that start with double underscore (__)

Such variables cannot be accessed directly

| didn't talks about data hiding before because:

= Hiding variables in Python this way is not as universal as in languages like
Java

= [t makes stuff ugly to read

= |t adds another layer of confusion
If you're serious about writing object-oriented Python, you should

still do it

= Here's part of the Planet class from before, with appropriate hiding

Planet:
~_init (self, name, radius, mass,
self. name = name
self. radius = radius
self. mass = mass
self. distance = distance

getName (self) :
self.__name
setName (self, name):
self. name = name

distance) :

Solar System

= We already have a Planet class, but we need to add:

= x location

= ylocation

= x velocity

= yvelocity

= Color

= A turtle object to draw the planet

Planet:
__init (self, name, radius, mass, distance, xVelocity, yVelocity, color):
self.name = name
self.radius = radius
self .mass = mass
self.distance = distance
self.x = distance
self.y =0
self.xVelocity = xVelocity
self.yVelocity = yVelocity
self.color = color
turtle stuff
self.turtle = turtle.Turtle()
self.turtle.color(self.color)
self. turtle.shape('circle')
self. turtle.up()
self.turtle.goto(self.x, self.y)
self.turtle.down ()

getName (self) :
self .name

getX (self) :
self .x

getY (self) :
self.y

getXVelocity (self) :
self.xVelocity

getY¥Velocity (self):
self.yVelocity

setXVelocity (self, xVelocity):
self.xVelocity = xVelocity

setY¥Velocity (self, yVelocity):
self.yVelocity = yVelocity

moveTo (self, x, y):
self.x = x;

self.y =y
self.turtle.goto(x, y)

Sun:

init (self, radius, mass):

self.radius = radius
self.mass = mass
self.x =0

self.y = 0

turtle stuff

self.turtle = turtle.Turtle()
self. turtle.color('yellow')
self.turtle.shape('circle')

getMass (self) :
self .mass

getX (self) :
self.x

getY (self) :
self.y

= Finally, a SolarSystem class will hold a Sun objectand a
list of Planet objects

SolarSystem:
__init (self, width, height):
self.sun = None
self.planets = []
screen = turtle.Screen ()

screen.setworldcoordinates (-width/2.0, -height/2.0, width/2.0, height/2.0)

setSun(self, sun):
self.sun = sun

addPlanet (self, planet):
self .planets.append (planet)

= The most important method in SolarSystem uses simplified
(but still confusing) physics to move the planets around

movePlanets (self) :
G = .1 # fake gravitational constant (real one is smaller)
time = .001 # time in seconds
planet self .planets:
planet.moveTo (planet.getX() + time * planet.getXVelocity(),

planet.getY () + time * planet.getY¥YVelocity())
deltaX = self.sun.getX() - planet.getX()

deltaY = self.sun.getY() - planet.get¥()

distance = math.sqrt(deltaX**2 + delta¥Y**2)

accelerationX = G * self.sun.getMass() * deltaX/distance**3
accelerationY = G * self.sun.getMass() * deltaY/distance**3
planet.setXVelocity (planet.getXVelocity () + time * accelerationX)
planet.setYVelocity (planet.getYVelocity () + time * accelerationY

= We can create a SolarSystem, a Sun, and four Planet
objects, and make them work

= Note that these values for radius, mass, distance, and velocities
are chosen to look okay and have nothing to do with reality

solarSystem

= SolarSystem(2, 2)

sun = Sun (5000, 10)
solarSystem.
solarSystem.
solarSystem.
solarSystem.

solarSystem

steps = 2000

step

setSun (sun)

addPlanet (Planet('Mercury', 19.5, 1000, .25, 0, 2, 'blue'))
addPlanet (Planet('Earth', 47.5, 5000, 0.3, 0, 2, 'green'))
addPlanet (Planet('Mars', 50, 9000, 0.5, O, 1.63, 'red'))
addPlanet (Planet ('Jupiter', 100, 49000, 0.7, 0, 1, 'black'))

range (steps) :

solarSystem.movePlanets ()

Upcoming

= Work time for Assignment 8

= Finish Assignment 8

	COMP 1800
	Last time
	Questions?
	Assignment 8
	Class Examples
	Student class
	More special methods
	Sentence class
	Hiding Data
	Encapsulation
	Hiding data in Python
	Hiding example
	Solar System
	Let's animate a solar system
	Updated Planet constructor
	Other Planet methods
	We need a Sun class as well
	SolarSystem class
	Moving the planets
	Code that uses these classes
	Quiz
	Upcoming
	Next time…
	Reminders

