
Week 12 - Wednesday

 What did we talk about last time?
 Objects
 Classes
 Constructors
 Accessors
 Mutators

 Let's write a Student class
 Instance variables:
 First Name
 Last Name
 GPA
 ID

 We need accessors for all of the instance variables
 And mutators for GPA

 Python has other special methods
 Some are useful if your class is designed to hold a collection of

things
 The __getitem__method retrieves an item based on the index

specified
 The __len__method returns the number of items in the collection
 The __contains__method says whether or not an element is in

your collection

 Let's make a Sentence class
 Its constructor
 Takes a string
 Splits that string on spaces to make a list of strings
 Stores that list as its instance variable

 The __getitem__method should return the specified words in
the list

 The __len__method returns the number of words in the
sentence

 The __contains__method should say whether the list
contains the string the user is looking for

 In many programming languages, there's a way to keep
member variables hidden from the outside world

 Java, C++, and C# use the private keyword to mark
member variables (and methods) as inaccessible from outside
of the class

 Such variables can only be affected from the outside by
methods

 Python doesn't have a private keyword
 Instead, it uses a naming convention to hide variables
 All member variables that you want to be hidden should have

names that start with double underscore (__)
 Such variables cannot be accessed directly
 I didn't talks about data hiding before because:
 Hiding variables in Python this way is not as universal as in languages like

Java
 It makes stuff ugly to read
 It adds another layer of confusion

 If you're serious about writing object-oriented Python, you should
still do it

 Here's part of the Planet class from before, with appropriate hiding

class Planet:
def __init__(self, name, radius, mass, distance):

self.__name = name
self.__radius = radius
self.__mass = mass
self.__distance = distance

def getName(self):
return self.__name

def setName(self, name):
self.__name = name

 We already have a Planet class, but we need to add:
 x location
 y location
 x velocity
 y velocity
 Color
 A turtle object to draw the planet

class Planet:
def __init__(self, name, radius, mass, distance, xVelocity, yVelocity, color):

self.name = name
self.radius = radius
self.mass = mass
self.distance = distance
self.x = distance
self.y = 0
self.xVelocity = xVelocity
self.yVelocity = yVelocity
self.color = color
turtle stuff
self.turtle = turtle.Turtle()
self.turtle.color(self.color)
self.turtle.shape('circle')
self.turtle.up()
self.turtle.goto(self.x, self.y)
self.turtle.down()

def getYVelocity(self):
return self.yVelocity

def setXVelocity(self, xVelocity):
self.xVelocity = xVelocity

def setYVelocity(self, yVelocity):
self.yVelocity = yVelocity

def moveTo(self, x, y):
self.x = x;
self.y = y
self.turtle.goto(x, y)

def getName(self):
return self.name

def getX(self):
return self.x

def getY(self):
return self.y

def getXVelocity(self):
return self.xVelocity

class Sun:
def __init__(self, radius, mass):

self.radius = radius
self.mass = mass
self.x = 0
self.y = 0
turtle stuff
self.turtle = turtle.Turtle()
self.turtle.color('yellow')
self.turtle.shape('circle')

def getMass(self):
return self.mass

def getX(self):
return self.x

def getY(self):
return self.y

 Finally, a SolarSystem class will hold a Sun object and a
list of Planet objects

class SolarSystem:
def __init__(self, width, height):

self.sun = None
self.planets = []
screen = turtle.Screen()
screen.setworldcoordinates(-width/2.0, -height/2.0, width/2.0, height/2.0)

def setSun(self, sun):
self.sun = sun

def addPlanet(self, planet):
self.planets.append(planet)

 The most important method in SolarSystem uses simplified
(but still confusing) physics to move the planets around

def movePlanets(self):
G = .1 # fake gravitational constant (real one is smaller)
time = .001 # time in seconds
for planet in self.planets:

planet.moveTo(planet.getX() + time * planet.getXVelocity(),
planet.getY() + time * planet.getYVelocity())

deltaX = self.sun.getX() - planet.getX()
deltaY = self.sun.getY() - planet.getY()
distance = math.sqrt(deltaX**2 + deltaY**2)
accelerationX = G * self.sun.getMass() * deltaX/distance**3
accelerationY = G * self.sun.getMass() * deltaY/distance**3
planet.setXVelocity(planet.getXVelocity() + time * accelerationX)
planet.setYVelocity(planet.getYVelocity() + time * accelerationY)

 We can create a SolarSystem, a Sun, and four Planet
objects, and make them work

 Note that these values for radius, mass, distance, and velocities
are chosen to look okay and have nothing to do with reality

solarSystem = SolarSystem(2, 2)
sun = Sun(5000, 10)
solarSystem.setSun(sun)
solarSystem.addPlanet(Planet('Mercury', 19.5, 1000, .25, 0, 2, 'blue'))
solarSystem.addPlanet(Planet('Earth', 47.5, 5000, 0.3, 0, 2, 'green'))
solarSystem.addPlanet(Planet('Mars', 50, 9000, 0.5, 0, 1.63, 'red'))
solarSystem.addPlanet(Planet('Jupiter', 100, 49000, 0.7, 0, 1, 'black'))
steps = 2000
for step in range(steps):

solarSystem.movePlanets()

 Work time for Assignment 8

 Finish Assignment 8

	COMP 1800
	Last time
	Questions?
	Assignment 8
	Class Examples
	Student class
	More special methods
	Sentence class
	Hiding Data
	Encapsulation
	Hiding data in Python
	Hiding example
	Solar System
	Let's animate a solar system
	Updated Planet constructor
	Other Planet methods
	We need a Sun class as well
	SolarSystem class
	Moving the planets
	Code that uses these classes
	Quiz
	Upcoming
	Next time…
	Reminders

