
Week 12 - Wednesday



 What did we talk about last time?
 Objects
 Classes
 Constructors
 Accessors
 Mutators









 Let's write a Student class
 Instance variables:
 First Name
 Last Name
 GPA
 ID

 We need accessors for all of the instance variables
 And mutators for GPA



 Python has other special methods
 Some are useful if your class is designed to hold a collection of 

things
 The __getitem__method retrieves an item based on the index 

specified
 The __len__method returns the number of items in the collection
 The __contains__method says whether or not an element is in 

your collection



 Let's make a Sentence class
 Its constructor
 Takes a string
 Splits that string on spaces to make a list of strings
 Stores that list as its instance variable

 The __getitem__method should return the specified words in 
the list

 The __len__method returns the number of words in the 
sentence

 The __contains__method should say whether the list 
contains the string the user is looking for





 In many programming languages, there's a way to keep 
member variables hidden from the outside world

 Java, C++, and C# use the private keyword to mark 
member variables (and methods) as inaccessible from outside 
of the class

 Such variables can only be affected from the outside by 
methods



 Python doesn't have a private keyword
 Instead, it uses a naming convention to hide variables
 All member variables that you want to be hidden should have 

names that start with double underscore (__)
 Such variables cannot be accessed directly
 I didn't talks about data hiding before because:
 Hiding variables in Python this way is not as universal as in languages like 

Java
 It makes stuff ugly to read
 It adds another layer of confusion

 If you're serious about writing object-oriented Python, you should 
still do it



 Here's part of the Planet class from before, with appropriate hiding

class Planet:
def __init__(self, name, radius, mass, distance):

self.__name = name
self.__radius = radius
self.__mass = mass
self.__distance = distance

def getName(self):
return self.__name

def setName(self, name):
self.__name = name





 We already have a Planet class, but we need to add:
 x location
 y location
 x velocity
 y velocity
 Color
 A turtle object to draw the planet



class Planet:
def __init__(self, name, radius, mass, distance, xVelocity, yVelocity, color):

self.name = name
self.radius = radius
self.mass = mass
self.distance = distance
self.x = distance
self.y = 0
self.xVelocity = xVelocity
self.yVelocity = yVelocity
self.color = color
# turtle stuff
self.turtle = turtle.Turtle()
self.turtle.color(self.color)
self.turtle.shape('circle')
self.turtle.up()
self.turtle.goto(self.x, self.y)
self.turtle.down()



def getYVelocity(self):
return self.yVelocity

def setXVelocity(self, xVelocity):
self.xVelocity = xVelocity

def setYVelocity(self, yVelocity):
self.yVelocity = yVelocity

def moveTo(self, x, y):
self.x = x;
self.y = y
self.turtle.goto(x, y)

def getName(self):
return self.name

def getX(self):
return self.x

def getY(self):
return self.y

def getXVelocity(self):
return self.xVelocity



class Sun:
def __init__(self, radius, mass):

self.radius = radius
self.mass = mass
self.x = 0
self.y = 0
# turtle stuff        
self.turtle = turtle.Turtle()
self.turtle.color('yellow')
self.turtle.shape('circle')

def getMass(self):
return self.mass

def getX(self):
return self.x

def getY(self):
return self.y



 Finally, a SolarSystem class will hold a Sun object and a 
list of Planet objects

class SolarSystem:
def __init__(self, width, height):

self.sun = None
self.planets = []
screen = turtle.Screen()
screen.setworldcoordinates(-width/2.0, -height/2.0, width/2.0, height/2.0)

def setSun(self, sun):
self.sun = sun

def addPlanet(self, planet):
self.planets.append(planet)



 The most important method in SolarSystem uses simplified 
(but still confusing) physics to move the planets around

def movePlanets(self):
G = .1 # fake gravitational constant (real one is smaller)
time = .001 # time in seconds
for planet in self.planets:

planet.moveTo(planet.getX() + time * planet.getXVelocity(),
planet.getY() + time * planet.getYVelocity())

deltaX = self.sun.getX() - planet.getX()
deltaY = self.sun.getY() - planet.getY()
distance = math.sqrt(deltaX**2 + deltaY**2)
accelerationX = G * self.sun.getMass() * deltaX/distance**3
accelerationY = G * self.sun.getMass() * deltaY/distance**3
planet.setXVelocity(planet.getXVelocity() + time * accelerationX)
planet.setYVelocity(planet.getYVelocity() + time * accelerationY)



 We can create a SolarSystem, a Sun, and four Planet
objects, and make them work

 Note that these values for radius, mass, distance, and velocities 
are chosen to look okay and have nothing to do with reality

solarSystem = SolarSystem(2, 2)
sun = Sun(5000, 10)
solarSystem.setSun(sun)
solarSystem.addPlanet(Planet('Mercury', 19.5, 1000, .25, 0, 2, 'blue'))
solarSystem.addPlanet(Planet('Earth', 47.5, 5000, 0.3, 0, 2, 'green'))
solarSystem.addPlanet(Planet('Mars', 50, 9000, 0.5, 0, 1.63, 'red'))
solarSystem.addPlanet(Planet('Jupiter', 100, 49000, 0.7, 0, 1, 'black'))
steps = 2000
for step in range(steps):

solarSystem.movePlanets()







 Work time for Assignment 8



 Finish Assignment 8


	COMP 1800
	Last time
	Questions?
	Assignment 8
	Class Examples
	Student class
	More special methods
	Sentence class
	Hiding Data
	Encapsulation
	Hiding data in Python
	Hiding example
	Solar System
	Let's animate a solar system
	Updated Planet constructor
	Other Planet methods
	We need a Sun class as well
	SolarSystem class
	Moving the planets
	Code that uses these classes
	Quiz
	Upcoming
	Next time…
	Reminders

